Unit 1
First- and second-order differential equations
Analytic solution of first-order differential equations using either separation of variables or the integrating factor method. Direction fields and numerical solution by Euler’s method. Solution of linear constant-coefficient second-order differential equations. Using the method of undetermined coefficients to find particular integrals for simple inhomogeneous differential equations.

Unit 2
Vector algebra and statics
Vectors both geometrically and algebraically. Scalar and vector products. Modelling forces (weight, normal reaction, tension, friction) as vectors. Calculating torques. Application to static equilibrium problems.

Unit 3
Dynamics

Unit 4
Matrices and determinants

Unit 5
Eigenvalues and eigenvectors
Finding eigenvalues and eigenvectors by hand for simple cases. Iterative methods for finding eigenvalues of large matrices.

Unit 6
Systems of linear differential equations
Solving first-order and second-order systems of linear differential equations by using the eigenvalue and eigenvectors of the coefficient matrix.

Unit 7
Functions of several variables

Unit 8
Mathematical modelling
Case study of pollution modelling in the Great Lakes. Overview of the modelling process. Dimensional consistency.

Unit 9
Oscillations and energy
Modelling forces due to a spring (Hooke’s law). Motion of a single particle under influence springs. Potential energy. Principle of conservation of mechanical energy and equivalence with Newton’s laws. Application of energy conservation to mechanical systems.

Unit 10
Forcing, damping and resonance
Modelling dampers. Single particle systems with springs and dampers. Forced oscillations and resonance.

Unit 11
Normal modes
Analysing mechanical systems with two or more particles with springs.

Unit 12
Systems of differential equations

Unit 13
Fourier series

Unit 14
Partial differential equations
Separation of variables applied to partial differential equations. Application to the wave equation and also to the heat equation.

Unit 15
Vector calculus
Scalar and vector fields. Gradient of a scalar field. Cylindrical and spherical coordinates.

Unit 16
Further vector calculus
Divergence and curl of a vector field. Line integrals of scalar and vector fields. Conservative fields and the curl test.

Unit 17
Multiple integrals
Area and volume integrals in Cartesian coordinates. Area integrals in polar coordinates. Volume integrals in cylindrical and spherical coordinates.

Unit 18
Reviewing the model
Dimensional analysis. Evaluating mathematical models. Case study on Great Lakes revisited.

Unit 19
Systems of particles
Centres of mass of systems consisting of particles, simple geometric objects and laminas. Analysing collision problems using conservation of momentum and Newton’s law of restitution.

Unit 20
Circular motion
Uniform and non-uniform motion in a circle. Defining angular velocity and angular momentum.

Unit 21
Rotating bodies and angular momentum
Analysing the motion of mechanical systems that rotate about an axis that may accelerate (but has a fixed direction).